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Abstract

Finite difference operators approximating second derivatives and satisfying a summation by parts rule have been
derived for the fourth, sixth and eighth order case by using the symbolic mathematics software Maple. The operators
are based on the same norms as the corresponding approximations of the first derivative, which makes the construction
of stable approximations to general parabolic problems straightforward. The error analysis shows that the second
derivative approximation can be closed at the boundaries with an approximation two orders less accurate than the
internal scheme, and still preserve the internal accuracy.
© 2004 Elsevier Inc. All rights reserved.

Keywords: High order finite difference methods; Numerical stability; Second derivatives; Accuracy; Boundary conditions

1. Introduction

High order accurate discretizations of the inviscid flux terms are often required in computational fluid
dynamics to efficiently capture the significant flow features, especially for transient problems
[5,7,10,13,15,16,20,23,24]. For applications that require the solution to the Navier-Stokes equations, e.g.
for separated or turbulent flows, it is essential to approximate the viscous fluxes accurately, too [25].
However, the second derivative terms have received little attention, especially concerning the stability issues
for high order approximations [1].

A desirable numerical method has the three main attributes high order of accuracy, simplicity, and stability.
Simplicity and high order of accuracy yield efficiency. Stability ensures that the numerical method is well-
behaved and that knowledge about the numerical errors are known. One way to obtain a simple, desirable
numerical method is to approximate the derivatives of the initial boundary value problem with high order
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accurate, central finite difference operators that satisfy a summation by parts (SBP) formula, and then use the
Simultaneous Approximation Term (SAT) method [3], for the implementation of the boundary conditions.

High order accurate SBP operators for the first derivative has previously been developed [11,12] and
refined [21]. To construct highly accurate and stable approximations of mixed hyperbolic—parabolic
problems, high order accurate SBP operators for the second derivative are required, too. For stability
reasons, the second derivative approximation must be based on the same norm as the SBP operators
approximating the first derivative. SBP operators for the second derivative, based on full norms, have
been constructed for the fourth and the sixth order case [4]. However, these operators did not have the
optimal SBP property (see Section 2.2). In this paper, we construct SBP operators for the fourth, sixth
and eighth order case based on both the full norms and the diagonal norms. In the full norm case, two
types of operators for each order of accuracy have been constructed. The first type are closed at the
boundary with stencils one order less accurate than the internal scheme, while the second type are closed
at the boundary with stencils two orders less accurate.

In Section 2, we discuss the SBP property for both the first and the second derivative and show the
construction procedure for the second derivative SBP operator. In Section 3, we analyze the accuracy
requirements. In Section 4, we present computations and additional analysis. In Section 5, we draw con-
clusions. In Appendix A, we briefly discuss second derivative operators and the wave equation. In Ap-
pendix B, we consider accuracy requirements for an incompletely parabolic system. In Appendixes C and
D, we present the diagonal norm operators and the corresponding full norm operators.

2. Construction of the second derivative

To describe the SBP property in detail, we need the following definitions. Let the inner product for real-
valued functions u,v € L?*[a, b] be defined by (u,v) = fabuv dx and the corresponding norm ||u||”> = (u,u).
The domain (a < x < b) is discretized using N equidistant grid points,

. . b—a
x;=a+(G—-1)h j=12...,N, h:N—l'
The numerical approximation at grid point x; is denoted v;, and the discrete solution vector
vT = [vg,v1,...,vy]. We define an inner product for discrete real-valued vector-functions u,v € R" by

(u,v),, = u"Hv, where H = H™ > 0, and a corresponding norm ||v||?, = v"Hv. We will also use the matrices
and vectors

e =[1,0,...,0]", Ey=diag([1,0,...,0]), 0
ey =1[0,...,0,11", Ey = diag([0,...,0,1]).

2.1. The first derivative

An SBP operator mimic the behavior of the corresponding continuous operator with respect to the inner
product mentioned above. Consider the hyperbolic scalar equation u; + u, = 0 (excluding the boundary
condition). Note that (u,u,) + (u,,u) = (d/dz)||u||*. Integration by parts leads to

d
dr
where we introduce the notation #?|° = u?(x = b) — u?(x = a).

Consider the semidiscrete approximation v, + Dyv = 0 of the equation. A difference operator D, = H~'Q

is an SBP operator if Q + Q' = B, where

lull = (ot 1) = () = =0, 2)
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B = diag(—1,0...,0,1), 3)
since this leads to

d _ _

5”%2:-%mH1Q®H—(Hle®H=-ﬁWQ+QUv=U§—%- (4)

Eq. (4) is a discrete analog to the integration by parts (IBP) formula (2) in the continuous case.

An SBP operator gives a strict stable approximation for a Cauchy problem. Nevertheless, the SBP
property alone does not guarantee strict stability for an initial boundary value problem. Such problems
require a specific boundary treatment. Imposing the boundary condition explicitly, i.e., combining the
difference operator and the boundary operator into a modified operator, usually destroys the SBP property.
In general, this makes it impossible to obtain an energy estimate. This common procedure, the injection
method, may cause exponential growth of the solution [13,22].

The basic idea behind the Simultaneous Approximation Term (SAT) method [3] and the projection
method [18,19] is to impose the boundary conditions such that the SBP property is preserved and an energy
estimate can be obtained.

As an example of the simple, yet powerful SAT boundary procedure, we consider the hyperbolic scalar
equation

u+u, =0, 0<x<1l, 1=20, u(0,1)=g). (5)
Integration by parts leads to

d,

gl =g —wi=1) (6)
The discrete approximation of (5) using the SAT method for the boundary conditions is

v+ H'Qv=—H "t{Ey — eogo(1)}, (7)

where Ey and ¢, are defined in (1).
The energy method in (7) leads to

d 2 2%, T 2
ol = 57— g — vk — =D (v — 5 ) -

An energy estimate exist for T > 1/2. The choice t = 1 yields

el =g -~ 0 — 80 Q

Eq. (8) is a discrete analog of the integration by parts formula (6) in the continuous case, where the extra
term (vo — go)2 introduce a small additional damping. Artificial dissipation is not included but can be added
in a stable way, see Section 2.2.

There is a variety of SBP operators approximating 9/0x to a certain accuracy, constructed with different
norms H [11,12,21]. With a diagonal norm, at most pth order accuracy can be achieved at the boundary,
where the internal accuracy is of order 2p. This will result in a (p + 1)th order accurate approximation of
the original problem. With a full norm H (the upper and lower part of the norm consist of 2p by 2p blocks),
a (2p — 1)th order accurate boundary closure exist, which result in a (2p)th order accurate approximation
of the original problem. This is due to the fact that it is possible to lower the accuracy by one order at a
finite number of points and still obtain accuracy of order 2p [§].

2.2. The second derivative

For parabolic problems, we need an SBP operator for the second derivative. Consider the heat equation
u, = u,,. Integration by parts leads to
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Sl = (00 + () = 2200, — 2] )

We base the construction of an SBP operator D, approximating 9 /0x? in Eq. (9). To fully mimic the IBP
property, we need D, = H™! (—DIHD; + BS), where D; is a consistent approximation of 9/0x, S includes an
approximation of the first derivative operator at the boundary, and B is given by (3). The energy method on
the semidiscrete approximation v, = D,v leads to the discrete analog to the IBP formula (see (9)) in the
continuous case

d
dr
However, it is not necessary to fully mimic the IBP property to obtain an energy estimate. Consider the
difference operator H~'(—A4 + BS), approximating d°/0x>. The energy method leads to
d
dr
To get an energy estimate it suffice that 4 + AT > 0, assuming that the boundary terms are correctly im-
plemented (see Section 3).

To distinguish between the different forms of the second derivative SBP operators we introduce the
following two definitions.

loll7; = (v, D20) 4 + (D20, 0); = 20x(S0)y — 200(S0)y — 2| D10 (10)

[o[[7, = 2uy(Sv),, — 200(Sv)y — 07 (4 + AT)v. (11)

Definition 1. A difference operator H~!(—4 + BS) approximating d*/dx” is a second derivative SBP oper-
ator if 4 + AT > 0, if S includes an approximation of the first derivative operator at the boundary, and B is
given by (3).

Definition 2. A difference operator H~'(—4 + BS) approximating 0?/0x* is a complete second derivative
SBP operator if it is an SBP operator and if 4 = D{HD,, where D; is a consistent approximation of 9/0x.

In Appendix A we briefly consider the wave equation, which leads to yet another definition.

Remark. The SBP operators for the second derivative introduced in [4] does not have the optimal SBP
property, since A + A" # 0.

Our goal is, for a mixed hyperbolic—parabolic problems, to construct a difference operator that results in
an energy estimate. Then, the SBP operator approximating 0?/0x> must be constructed using the same
norm (H) as the SBP operator approximating 0/0x. To preserve global accuracy, the approximation of the
second derivative and the boundary derivative (Sv) must also be accurate enough (discussed further in
Section 3).

There are essentially two options for how to construct the SBP operator for the second derivative. The
first option is to construct a minimal width operator, which is the main consideration in this paper. The
second option is to use the first derivative operator D; = H~'Q twice, which we discuss in some detail
below.

Using the first derivative twice leads to H~!(—DTHD; + BD,), i.e., a complete second derivative SBP op-
erator (see Definition 2). For the full norm, this approach results in a boundary closure of order 2p — 2 and a
boundary derivative operator BS of order 2p — 1, where 2p is the internal order of accuracy. For the diagonal
norm, we obtain a boundary closure of order p — 1 and a boundary derivative operator BS of pth order.

Remark. To handle variable diffusion terms such as (au,) , where a is non-constant, we could use the first
derivative approximation twice, i.e., form D;4D, since this leads to a discrete analog to the IBP formula.
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Compared to the minimal width operator, using the first derivative twice has some drawbacks. Firstly,
the internal width of the scheme increases from 2p + 1 to 4p + 1. Secondly, the internal error constant is
2p + 2 times larger. Finally, since the m-mode (the highest frequency that can exist on the grid) is not
modified (not “seen”) with a centered, odd-order difference operator, like H~'Q, it also holds for the
product (H ‘IQ)Z. This causes problems, since the n-mode is primarily responsible for the spurious oscil-
lations (causing the aliasing error) in the solution. One solution is to combine the first derivative operator
H~'Q with a special SBP-preserving artificial dissipation operator DI = H'R (see [15]) to construct an
upwind operator D, = H~'(Q + R) and a downwind operator D_ = H-!(Q — R), where R = R > 0. By
using these operators, we can construct an upwind-based SBP operator for the second derivate

1
DY = 5(D:D_+D.D.) = H™'(—DYHD, + BD,) — H™'(DI'HDI),
where the extra term —H ~!(DITHDI) introduce damping. Due to the construction of DI, this operator
efficiently ““kills” the 7-mode without destroying the accuracy of the method. This completes the discussion
on using the first derivative twice. We now continue with the minimal width operators.

2.3. The construction

This section briefly describes the construction of the second derivative SBP operators (see Definition 1).
Here, the accuracy and symmetry requirements on the second derivative operator are assumed given
(motivated later). The form of the operator is given by D, = H~!(—4 + BS), where 4 + AT >0, S is the
boundary derivative operator, and H is the norm given from the corresponding first derivative SBP op-
erator (D; = H~'Q). The requirement for minimal width (the same width and internal order of accuracy as
the corresponding first derivative approximation) implies a given interior scheme. It remains to find the
boundary modification such that:

e D, is accurate enough at the boundaries,
e §is accurate enough, and
e A+A4T>0.

The accuracy at the boundary depends on the type of norm used. Let 2p denote the internal accuracy (or
design order) of the scheme. For the full norm, the first derivative approximation have a boundary closure
of order 2p — 1. However, as will be shown in Section 3, it is enough to close the boundaries of the second
derivative approximation with stencils of order 2p — 2 and use a boundary derivative approximation of
order 2p — 1, to preserve the design order of accuracy. For the diagonal norm, the first derivative SBP
operator is only pth order accurate at the first 2p boundary points, leading to less restrictive accuracy
requirements of the corresponding second derivative approximation. The structure of 4 is shown in Fig. 1.

M C 0
A= c D c
0 C M

Fig. 1. The structure of 4 in the second derivative SBP operator.
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The bar is here defined as a permutation of both rows and columns, i.e

Py Py P = Py Py Py
P= = P= .
[le Py Py P Pp Py

Here (see Fig. 1) M is a 2p x 2p matrix to be computed and

rdy - d, 7
Lo c:{go g:::]
d, - dy - d, Sd
D
D= dyy d, : (12)
dp do dy G = : .
. .o d - - d,
i d, - do]

where Cy is a p x p zero matrix. The middle part, 4~ (CTDCT), represents the interior scheme of the second
derivative SBP operator, i.e., the minimal width central scheme of order 2p. The boundary derivative
operator has the form

sy - —s, 0..

0 S, . S1

The order restriction on S leads to a linear relation between the unknowns s;, i = 1...r. Note that a pth
order accurate first derivative approximation requires at least p + 1 unknowns. The 2p first and last rows in
D, = H™'(—A4 + BS) represent the boundary part of the second derivative operator, with the undetermined
coefficients coming from M and S. The order requirement on D, leads to a linear equation system. If a
solution exist, the rest of the undetermined coefficients are tuned such that 4 + 4T > 0.

To construct the diagonal norms-based second derivative SBP operators (see Definition 1), we make the
following assumptions. (1) Operators with pth order accuracy at the boundaries (the same accuracy as the
corresponding first derivative SBP operators) exist, (2) 4 = AT, since a symmetric 4 is desirable (see Fig. 1
and Appendix A). Given these assumptions, we used the symbolic mathematics software Maple to con-
struct symmetric SBP operators (see Definition A.2) for the second, fourth, sixth and eighth order diagonal
norm (see Appendix C).

Due to the more demanding accuracy conditions, constructing second derivative SBP operators for the
full norm is more complicated. We assume that (1) there exist second derivative SBP operators of order
2p — 2 at the boundaries, and (2) S is (2p — 1)th order accurate. Under the assumption 4 = AT, no solutions
could be found, even if we increased the size of M (see Fig. 1). But with a non-symmetric 4, solutions exist
for the fourth, sixth and eighth order full norm (see Appendix D).

To study the accuracy requirements, we also constructed full norm SBP operators one order more accurate than
the previous, i.e., with boundary closures of order 2p — 1 and (2p)th order accurate boundary derivatives [14].

3. Accuracy requirements

In this section the accuracy requirements of the difference approximations and the boundary approxi-
mations are analyzed by considering a parabolic problem. Consider the advection—diffusion equation
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Uy + au, = €y, 0<x<17 IZOa u(x,()):f(x),

a(0.1) + ,0.0) = o). fu(1.1) +(1.0) = 2,(0). )
where a, ¢ > 0. The energy method applied to (13) leads to
d ) € : € )
Gl =~ 29 (u(1.0) = 5 z00) + gl
o200 (10,0~ G0~ P 2l (14)
a+ 2ex a+ 2ex
An energy estimate exists for
a+2ef >0, a+2ex<0. (15)
The discrete approximation of (13) using the SAT method for the boundary conditions leads to
v +aH 'Qv=eH ' (=4 + BS)v — H 'to{Eo(od + S)v — eogo(t)}
— H " {Ex(BI + S)v — eygi (1)}, 0(0) = f, (16)

where Ey, Ey, ¢p and ey are defined in (1). The energy method applied to (16) leads to

d, » T 2 2 % 2
- — 2 — 1 2 ) —
dtHUHH (a+271p) (UN a+2rlﬁgl) +a+2nﬁgl + (a — 270%) ( v a—2roocg0

2

— 0 g2 2(8t), (e — 1)) — 2(S0)y (€ + 7o) — 2e0™ (4 + AT
a— 2t

An energy estimate (analog to the continuous case (14)) is obtained if 4 + AT > 0 (see Definition 1) and

T =—€, T =€ (17)
We are interested in an estimate of the error. If we insert the true solution u(x, #) into the numerical scheme
(16) and subtract (16) we obtain the error equation

ee=Me+T, e(0)=0, (18)
where

M=H"'"(—aQ+e(—A+BS) —tEy(a+S) — 1. Ey(f +5)).
In (18),

T=[OW),...,00),0h%),...,0H"),0H),... 01" (19)

is the truncation error, with contributions from the approximation of the derivatives and the approxi-
mation of the boundary derivatives (Su) in the penalty terms. Note that » < 2p. If (15) and (17) hold the
semidiscrete approximation (18) will result in an energy estimate, which gives us an error estimate directly
by using the energy method in (18). However, due to the boundary error, this will result in the estimate
|le|]| < @(h"), which is not sharp.

To obtain an optimal error estimate, the error is split into two parts e = ¢; + e, where the subscripts (i,b)
denotes the inner and the boundary points, respectively. The truncation error is divided correspondingly,
ie., T =T + T, where
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T,=10,...,0,0(h%),...,0(h*),0,...,0]",

. T (20)
T, =[OH),...,0H),0,...,0,0"),...,0W)] .
Lemma 1. If (15) and (17) hold in (16), (18), then
lleilly < O(r). (21)

Proof. The equation for the inner part of the error is given by (18), where e now denotes ¢; and T denotes T;.
The energy method applied to (18) leads directly to

nt

exXp (E)
v

||ei||H < (”TiHH)max(O,t) = @(th)?

(where # is a arbitrary positive constant) if (17) and (15) hold. [

To estimate ey,, we use the Laplace transform technique [9]. Laplace transformation of (18), where only
e, 1s considered, leads to

56— Mé& =T, (22)
In this case it is natural to multiply (22) by 4* and introduce § = sh?, T, = B*Ty, and M = Mh>.

Remark. For a hyperbolic problem 5 = sh, T, = hT, and M = Mh, since this means that the coefficients in A/
are of ((1). The analysis would otherwise follow the path shown below, see [8].

We now rewrite (22) as
Péy, = T, (23)

where P = 51 — M (I is the identity matrix). An SBP operator (approximating either the first or the second
derivative), (2p)th order accurate in the interior, has two boundary blocks of size (2p x 3p), which we
denote P! (where (1,r) denotes the left and the right boundary, respectively). Recall that 7; is zero in the
interior. The solution to (23) can be written as

2p )
@), = o, (24)
i=1

where x;, i = 1,...,2p are given by solving the characteristic equation (determined by the internal difference
scheme) and the unknowns o¢; are determined by the remaining equations, corresponding to the boundary
blocks.

We seek conditions for which ¢;, i = 1,...,2p are bounded and proportional to #"*2, since this leads to
lle|| = O(h*), which means that we can have r = 2p — 2, and still obtain accuracy of order 2p.

We need exactly 2p equations to solve for the 2p unknowns ¢;. However, each boundary block P! has
2p rows (i.e., 4p in total) and the set of equations must be reduced. Let
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o>

o>
ol N
Il

élr) =
~ N PN ~ T - _ T T T
egr) = \€)N_3p+19 ’ (eb)pr} ) sz = [(Tb)N—3p+1’ T (Tb)pr] ’
and let
(1) 1) (r) (r)
P(l) _ Pll P12 P(r) _ PZ; Pzi

(25)

a o ) (r)
By Py Py P
where P11 , Pzal " are p x p-matrices and P12 , Pzgl are p x 2p-matrices. The 4p equations can be written as

( (I,r) ( 7 (Lr)
P € +P12 € = Tl ’

ol ~(Lr

€ €

(26)
Pettn o panglin — 7o),
If P\ is non-singular (notice that P.;"” is independent of 3), (26) can be reduced to
B(l,r)égl,r) _ ’f;(Lr))
where
1, 1) Loy =1 p(lr) 74, (1, 1) p(lr)y—1 7,
B = Pl PR P, B0 = B B
This leads to a linear system of equations
C(3)o = T,, 27
S
where
s 7 (T T
o= |19, [1,")]
and
Zzp bl lKli)+l e Zzp bl IK[;[JJH
Zzp bl);cp“ ZZP b ot o
C(g)* i=1"pi™1 i=1 “p,i 2p o= . (28)
o 2p b(r) N—-3p+i 2p b N 3p+i ’ B : ’
>l by R r 1i%2p
O2p
2 N 3p+i 2, N 3p+i
Zzpl b[“ 1 r T Zzpl bpl 2p r _

Remark. For a (2p)th order accurate method it is necessary to modify p equations close to the boundary.
The additional p equations required for the SBP operators make the reduction discussed above necessary.

Lemma 2. If C(5) in (27) is non-singular for Re 5 = 0, lelr in (26) is non-singular and r = 2p — 2, then
levllz; = O(h). (29)
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Proof. Multiplying (16) by 4> implies that the coefficients in M = Mh> (see (23)) are proportional to
(y; + 72h), where y, and 7, are constants of order one. This means that the solution to (27) has terms
proportional to (7, +7,h) A2 if C(5)#0. If the grid size 4 is sufficiently small, (7, +7,h) " ~
1/y, — (y,/73)h. Using Parsevals relation and relation (24) we obtain (29). O

Remark. Lemma 2 holds also for a hyperbolic problem if we replace r = 2p — 2 with r = 2p — 1.
We are now ready to tie everything together in the following proposition

Proposition 3.1. Consider the advection—diffusion equation (13) and the corresponding semidiscrete problem
(16). The error equation is given by (18), (19). If the estimates (21), (29) hold, then

lell; = (7). (30)

Proof. The triangle inequality leads directly to (30). [

Proposition 3.1 states that a stable implementation of a parabolic problem satisfying Lemmas 1 and 2
allows us to: (i) use one order less accurate approximations, compared to the internal accuracy, of the
physical boundary conditions, (ii) close the first and the second derivative approximations with stencils that
are two orders less accurate than the internal scheme, and still maintain the design order of accuracy.

4. Computations and further analysis
4.1. A scalar hyperbolic—parabolic problems

To test the convergence rate of the semidiscrete approximation of advection—diffusion equation (13) we
choose an analytic solution to the Cauchy problem

ct—al c—a
— = p=—-
2e 2e
To truncate the domain we introduce boundary conditions at x = 0 and x = 1. The convergence rate is
calculated as

u— M h
¢ = log, (—: - H) / log, (h—) (32)

where u is the analytic solution and v"! the corresponding numerical solution with grid size A;. |lu — v"!|, is
the [, — error.

The convergence studies for the fourth and sixth order case are shown in Tables 1 and 2, where the
convective terms have been treated with one order less accurate boundary closures, compared to the in-
ternal accuracy. Two types of second derivative approximations have been tested for each order of accu-
racy. The first approximation is closed at the boundaries with stencils two orders less accurate, compared to
the internal accuracy. The second type is closed with one order less accurate approximations at the
boundaries, compared to the internal accuracy. For each computation we have included the case where the
stability conditions (17) are violated by choosing 1) = —e/2, such that the energy estimate no longer holds.
In the computations presented in Tables 1-3 we have chosen a =1, ¢c=2,e=0.1 and a =1, f =0 (see
(13)). The solutions are advanced in time using the standard fourth order Runge-Kutta method.

The error analysis requires that the numerical approximation results in an energy estimate. If we violate
(17) such that an energy estimate no longer exists, one order of accuracy is lost if the second derivative

u=sin(wlx—ct))e™, >0, w= , le] > lal. (31)
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Table 1
log(/,-error) and convergence rate for the fourth order case, based on the block norm
N I q 1 q"
(a) Second order boundary closure®
40 -4.31 =3.11
60 -5.06 4.14 -3.67 3.11
100 -5.98 4.09 —4.36 3.08
200 -7.20 4.04 -5.28 3.04
300 =791 4.02 -5.82 3.03
(b) Third order boundary closure
40 -4.24 -3.84
60 -4.97 4.09 —4.58 4.09
100 -5.89 4.06 -5.48 4.02
200 -7.11 4.04 —6.69 3.98
300 -7.82 4.02 -7.39 3.98
In the computations marked v, (17) is violated by choosing 19 = —¢/2.

#Note the loss of convergence.

Table 2
log(/,-error) and convergence rate for the sixth order case, based on the block norm
N L q l 4
(a) Fourth order boundary closure*
40 -5.80 -4.46
60 —-6.84 5.75 -5.32 4.78
80 -7.58 5.86 -5.94 4.87
100 -8.16 5.98 -6.42 491
120 -8.66 6.27 —6.81 4.94
(b) Fifth order boundary closure
40 -5.73 -4.83
60 —-6.75 5.68 -5.87 5.82
80 -7.49 5.79 —6.62 5.92
100 -8.06 5.86 -7.21 5.96
120 -8.54 5.92 —7.68 5.98
In the computations marked v, (17) is violated by choosing 7o = —¢/2.

#Note the loss of convergence.

approximation is closed at the boundaries with two orders less accurate stencils, compared to the internal
accuracy. Table 3 shows the results for the fourth order diagonal norm case, where also the approximation
of the first derivative has a boundary closure two orders less accurate than the internal scheme.
The numerical study shows (indicated by the analysis in Section 3) that a difference approximation for a
parabolic problem retains the design order of accuracy if an energy estimate exists and
e two orders less accurate boundary closures are used, compared to the internal accuracy, for both the first
and the second derivative approximations;
o the physical boundary conditions are approximated with one order less accurate approximations, com-
pared to the internal accuracy.

Remark. By using a numerical algorithm we have verified that the conditions in Lemma 2 hold for the
semidiscrete approximations of (13), used in the convergence study (Tables 1-3).

One might suspect that the loss of accuracy (shown in Tables 1-3) could have something to do with an
instability in the method since the energy estimate is lost. But an eigenvalue analysis shows that the methods
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Table 3
log(/,-error) and convergence rate for the fourth order case, based on the diagonal norm, with second order boundary closure for both
the first and the second derivative approximations

N 12 q [; qu
40 —4.25 -2.59
60 -5.02 4.30 -3.13 3.01

100 -5.98 4.25 -3.81 3.01

200 -7.24 4.17 —4.72 3.01

300 -7.97 4.11 -5.25 3.00
In the computations marked v, (17) is violated by choosing 7o = —¢/2. Note the loss of convergence, right-hand side (columns 4 and 5).

are stable and that the discrete spectrum converges to the continuous eigenvalues at the same rate as the /,-
error in Tables 1-3.

In [4] a similar convergence study was done for the nonlinear Burgers’ equation. The results for the
fourth order accurate case showed that a boundary closure with stencils of second order accuracy reduced
the overall convergence rate to third order. This motivated us to perform similar computations. The results
of that study (not presented here) agreed well with our previous computations for the linear advection—
diffusion problem, i.e., a boundary closure with stencils of second order accuracy yield an overall con-
vergence rate of fourth order. We also tuned the penalty parameters such that the stability conditions were
violated. This again resulted in an overall convergence rate of third order. The loss of accuracy in [4] could
possibly be due to an non-optimal choice of penalty parameters.

In Table 4, a convergence study for a hyperbolic problem (5) is presented. The results show, in agreement
with [8], that in order to preserve the internal accuracy of the scheme we must close the boundaries with at
most one order less accurate stencils.

4.2. An incompletely parabolic system

The results of the previous sections, i.e., the accuracy requirements on the boundary closures for par-
abolic and hyperbolic problems motivated us to investigate an incompletely parabolic system.

4.2.1. The continuous problem
Consider the incompletely parabolic system

U + Cux = DuxX7 (33)
Table 4
log(/,-error) and convergence rate for a hyperbolic problem
N I, q
(a) Fourth order diagonal norm, second order boundary closure
40 -2.15
60 -2.70 3.05
100 -3.38 3.02
200 —4.29 3.01
300 -4.82 3.01
(b) Fourth order full norm, third order boundary closure
40 -2.77
60 -3.49 3.99
100 -4.38 3.96
200 -5.58 3.98

300 -6.29 3.98
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where

u) 1 1 0 0
u= [u@}’ C= {l _1], D= {O J, e > 0.

We consider (33) to be a model of the compressible Navier—Stokes equations. The energy method is used
to derive suitable boundary conditions. When characteristic boundary conditions are used for incomplete
parabolic systems (like the Navier—Stokes equations or Eq. (33)), there are some theoretical problems, see
[17]. The matrix C is symmetric with distinct eigenvalues and orthogonal eigenvectors. The diagonal form
of C is RTAR where

/3 V241 1
_ 2 0 _ | Vv Va2
A -

1
V4a-2v2  A/4-2v2

An equation on symmetric characteristic form is obtained by multiplying (33) by the matrix R. The result is
v, + Av, = Dvm (35)
where v = Ru and
p=%10 AL
221 1 V24l
Acrtificial boundaries are introduced at x = 0,1 and the full problem becomes
v+ Av, = Do + F(x,1), 0<x<1, t>0,
Lov=go(t), x=0, t=0,
Liv=g(t), x=1, t=0,
v(x,0) = f(x), 0<x<l, t=0.

In (36) Ly, L, are the boundary operators to be determined. For completeness we have also included a
forcing function F. The energy method on (36) leads to

(36)

d 1 b
Sl = BTuco = BTyl I =2 [ iTDu, a,
t n 0
where 1 > 0 and

BT =v"(Av—2Dv,) = [v, v][0Ollv, v, O= { (37)

A =D
-D 0 |

To simplify the analysis we consider homogeneous boundary conditions (go = g; = 0). To obtain a well posed
problem, BT,_y < 0 and BT,—; > 0 are required. The boundary terms (37) can be written in the following way:

2
BT =i {(hi — G)’ = G}, (38)
i=1

where 4, = V2, /o = —v/2 and (G, Gz]T = Dv,. The number of boundary conditions at hand are given by
the eigenvalues of the matrix Q in (37). It can be shown that O have two positive, one negative and one zero
eigenvalue. This implies that we have to specify two boundary conditions at x =0 and one boundary
condition at x = 1. A maximally dissipative set of boundary conditions at x = 0 are v;4; — G; =0, G, =0
(since 4; > 0,4, < 0). At x = 1 we are only allowed to specify one boundary condition, and at first it seems
impossible to get BT,_, > 0. However, D is linearly dependent and G, = oG, with & = v/2 — 1. By choosing
14y — G, = 0 as a boundary condition and use the relation G, = G, /o, we get BT,—| = )Ll_l (Mo, — )Lzowz)z—
V(272 + Jay)) > 0, since 0222 + A4y = 2((vV2—1)* = 1) < 0. By applying the characteristic boundary
conditions we obtain the following energy estimate:
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d 1 L
@ o]l = 0" Qo] — 0" @il + nllo]* + ; el 2/0 v, Duy d, (39)
where the matrix €, is negative definite and Q; is positive definite
o —/11 0 o /11 —06/12
QO o |: 0 /12:| ’ Ql o |:—O!}v2 —/lz :| ’ (4())

4.2.2. The semidiscrete problem

When analyzing system of equations it is convenient to introduce the Kronecker product,

C()J]D e CO,q—lD
CP,L()D s Cp,|‘q,1D

where C is a p X ¢ matrix and D is a m x n matrix. Two useful rules for the Kronecker product are
(4® B)(C® D) = (AC) ® (BD), and (4@ B)" = AT @ B.

Before we proceed by constructing the semidiscrete approximation we write the boundary operators (see
(36)) in matrix notation

-~ 0
= I, — 1)) D—
Ly=LA+ (L — ) o’

0
L] = ]1/1 + (10 - ([2 + OCIR)]I)Da7

(41)

where
1 0 0 0 1 0 0 1
w=lo o] n=[o 3] #=[o V] w= o]

Remark. In (41) we have included the discrete version of the relation G; = aG,, necessary for stability
reasons in the discrete case. The relation G| = G, is not a regular boundary condition, it can be considered
as a compability relation or a numerical boundary condition.

The corresponding boundary operators in the semidiscrete approximation become

Ly = IpA ® Ey + (I} — 1))D ® E,S,

- ~ (42)
L] = 11/1 ®EN + ([() - ([2 + OC[R)Il)D ®ENS

Note that the matrix S corresponds to the boundary derivative operator (see Section 2.2). The SAT method
applied to (36) leads to

v+ [A@H Qo= [DeH (—~a+BS)|v+F+Ton {lw-goe)

+21®H71{Z10—g1®61\/} (43)
v(0) =7,
where v" = | 8”,02”, .. .,US),vg),vgz), .. .,UE\?)]. Ey, ey, Ey and ey are defined in (1). The 2 x 2-matrices X

and X can be tuned in order to give a stable scheme.
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Applying the energy method by multiplying (43) by v (/, ® H), adding the transpose and making use of
O+ Q" = B yields

d .
a ||UH1211 < UE)F[A + 220]0/1]1)0 + U]-l;,[ —A + 221[1/1]17/\/ — 21.7(1)-[]2 — 20(11 — Io)]D(SU)O
- 1 ~
+ 20y [ + 21 (o — (I + ade)1)]D(S),, + nllolly, + p IFI7 =o' (D@ (4 +4T)w, (44)
where the notations v; = [vg),v(()z)], vy =1 ](\}),vz(vz)] have been used. I, — Zo(I; — I)) =0 and L, + X (lh—
(L + o)) =0, ie.,
-1 0 -1 «
20:[0 1}, zlz[o 1] (45)
is required to bound the energy. Inserting (45) into (44) yields
d 2 T T 2 1 2 T (7 T
gy 1ol = vo Qovo — vy Qiow + o]l + p 1Flly — v (D@ (4 +47))o. (46)

The estimate (46) is an analog to the continuous energy estimate (39).

Remark. Without introducing the numerical boundary condition G, = aG, at x =1, the relation
L+ 2\(Iy — (I + adg)];) = 0 changes to I, — 21 = 0, with no solution. Hence, the numerical boundary con-
dition G| = aG, is indeed necessary in order to get an energy estimate for the semidiscrete approximation of (36).

4.2.3. Numerical results
To test the accuracy of the approximation (43) of the incompletely parabolic system (36) we choose an
analytic solution

—sin(w(x — ct))e ™
sin(w(x + ct))e™® |’

and modify f, F and the boundary data accordingly. The convergence studies for the fourth and sixth order
case are shown in Tables 5 and 6, where the convective terms have been treated with one order less accurate
boundary closures, compared to the internal order of accuracy. The viscous terms in the (2p)th order case
are closed at the boundaries with stencils of order 2p — 2 and 2p — 1, and the corresponding boundary
derivatives are approximated to (2p — 1)th and (2p)th order. Again we have included computations where
the stability conditions (45) are violated by choosing X, = 1/2diag(—1, 1). In the computations presented in
Tables 5-7 we have chosen w=10, b=1, ¢ =1, e = 1. The solutions are advanced in time using the
standard fourth order Runge-Kutta method.

The numerical studies indicate that a difference approximation, with boundary closures two orders less
accurate for the approximation of the second derivative (the hyperbolic approximation has one order less
accurate boundary closures), and a physical boundary condition one order less accurate, compared to the
internal accuracy, maintains the design order of accuracy. If the stability condition (45) is violated, the
overall convergence rate is reduced by one order.

For the parabolic scalar equation we have shown that we can lower the accuracy by two orders, com-
pared to the internal scheme, also for the approximation of the first derivative. This is the case when using a
scheme based on the fourth order diagonal norm. However, for the incompletely parabolic system, the
results for the fourth order diagonal norm approximation (Table 7) show that a second order less accurate
boundary closure, compared to the internal scheme, for the approximation of the first derivative is not
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Table 5
log(/,-error) and convergence rate in the fourth order case, based on the block norm
N b 9 5 q
(a) Second order boundary closure®
30 -3.31 -3.26
60 —4.52 3.91 —4.25 3.24
90 -5.23 4.00 —4.81 3.10
120 -5.74 4.03 -5.19 3.05
150 —-6.13 4.03 -5.49 3.03
(b) Third order boundary closure
30 -3.31 -3.27
60 —4.50 3.84 —4.43 3.76
90 =521 3.97 -5.12 3.88
120 -5.71 4.00 -5.61 3.91
150 —-6.10 4.01 —-6.00 393

In the computations marked v, (45) is violated by choosing Xy = 1/2diag(—1,1).
#Note the loss of convergence.

Table 6
log(/-error) and convergence rate in the sixth order case, based on the block norm
N b q I ¢
(a) Fourth order boundary closure*
30 -4.75 -4.57
60 —6.66 6.20 —-6.05 4.79
90 =17.72 5.94 -6.92 491
120 -8.48 6.01 -7.55 4.96
150 -9.07 6.00 -8.03 4.95
(b) Fifth order boundary closure
30 -4.76 -4.72
60 —6.66 6.16 -6.72 6.48
90 =17.72 5.93 =7.79 6.03
120 -8.48 6.02 -8.55 5.97
150 -9.07 6.05 -9.13 5.98

In the computations marked v, (45) is violated by choosing Xy = 1/2diag(—1,1).
#Note the loss of convergence.

Table 7
log(/,-error) and convergence rate in the fourth order case, based on the diagonal norm, with second order boundary closure for both
the first and the second derivative approximations

N 12 q
30 -2.59
60 -3.61 3.33
90 —4.18 3.19
120 —4.58 3.13
150 —4.88 3.11
30 -2.60
60 -3.55 3.10
90 -4.10 3.05
120 —4.48 3.05
150 -4.78 3.04

In the computations marked v, (45) is violated by choosing X, = 1/2diag(—1,1).
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enough to maintain the accuracy of the internal scheme, even if (45) holds. In fact we can prove (see
Appendix B) the following proposition.

Proposition 4.1. Consider the incompletely parabolic system (33) with the boundary conditions (41) and the
corresponding semidiscrete problem (43). If Assumption B.2 holds, Lemma 2 holds for both the hyperbolic part
and the parabolic part of the error equation (see the remark in Appendix B)) and Lemma B.1 holds, then

lell; = (7). (47)

We summarize the results for the incompletely parabolic system. The numerical studies indicate and it is
proven in Appendix B, that a difference approximation for an incompletely parabolic system retain the
design order of accuracy if an energy estimate exists and
e two orders less accurate boundary closures are used, compared to the internal accuracy, in the second

derivative approximations;

e one orders less accurate boundary closures are used, compared to the internal accuracy, in the first de-
rivative approximations;

o the physical boundary conditions are approximated with one order less accurate approximations, com-
pared to the internal accuracy.

5. Conclusions

The main objective was to construct second derivative approximations that combined the following
desirable properties:

o Stability for general parabolic and incompletely parabolic problems.
e High order of accuracy, preservation of the overall convergence rate.
e Maintaining simplicity of the numerical scheme.

To achieve the three properties above, we have constructed finite difference approximations for the
second derivative with the requirements: (i) They satisfy a summation by parts rule based on the same norm
as the existing first derivative SBP operator. (ii) They have a boundary closure which is at most two orders
lower, compared to the internal accuracy of the scheme. (iii) They are of minimal width in the interior, i.e.,
the same width as the corresponding first derivative approximation.

Accuracy requirements for hyperbolic, parabolic and incompletely parabolic problems were studied. The
error analysis showed and the numerical computations indicated that the second derivative operator can
be closed with boundary approximations two orders less accurate, compared to the design order of the
scheme, and still maintain the internal accuracy. One order less accurate approximations, compared to the
internal accuracy, of the physical boundary conditions were also allowed.

The numerical tests indicated that there is a close connection between the overall convergence rate and
the stability estimate. If the stability conditions were violated, the overall convergence rate was reduced by
one order when using a second derivative approximation with two orders less accurate boundary closures.

Appendix A. A remark on the wave equation

We briefly consider the wave equation, since it introduces an extra stability requirement on the SBP
operator (see also [2]). The energy method applied to the wave equation, u, = u,,, leads to

d
= (- N ?) = 2.
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An energy estimate requires appropriate boundary conditions

ou(0,1) + u(0,8) = go(t), Pu(l,t) +u,(1,2) = g1(¢). (A.1)
Assuming that gy = g; = 0, the energy method leads to

d 2 2 2 P _

= (a4 > + o (1,0) = s(0,0)) = 0.

The problem has an energy estimate if

<0, p=0. (A.2)
The semidiscrete approximation of the wave equation is
vy = H (A + BS)v+ v, H 'Eo(a+ S)v+ 7, H "Ex (B + S)v, (A.3)

where the SAT method has been used to implement the (homogeneous) boundary conditions. £y and Ey are
defined in (1). By choosing the penalty parameters as,

=1 1=-1, (A4)
we end up with v, = —H (4 + C)v, where C = —aE, + BEy = CT. If (A.2) holds, C is positive semidefinite.

Lemma A.l. If (A.2) and (A.4) hold, (A.3) has a non-growing solution if A is symmetric and positive semi-
definite.

Proof. If (A.2) and (A.4) hold, (A.3) can be written v, = —H~'(4 + C)v, where C = CT > 0. To guarantee a
non-growing solution, the eigenvalues of —H ~!(4 + C) must be non-positive and real. If 4 is symmetric and
positive semidefinite this is guaranteed, since the eigenvalue problem —H ! (4 + C)x = Jx can be written as
the symmetric-definite generalized eigen-problem —(4 + C)x = LHx, for which it can be shown (see for ex-
ample [6]) that A, = b;/h;, where b; are the eigenvalues to —(4 4+ C) and A, are the eigenvalues to H. With
A=A" >0, b; <0 and real. Since H = H" > 0, this implies that also 4; <0 and real. [

Due to Lemma A.1 we introduce yet another definition (compare with Definitions 1 and 2).

Definition A.2. A difference operator H~!(—4 + BS) approximating 9*/0x? is said to be a symmetric second
derivative SBP operator if it is an SBP operator and if 4 = AT.

Hence, symmetric second derivative SBP operators (see Definition A.2) guarantee stable semidiscrete
approximations to the wave equation, assuming that the boundary conditions are treated correctly.

Remark. The minimal width SBP operators in the full norm cases have non-symmetric 4 : s, which means
that H~'(4 + C) might have eigenvalues with an imaginary part. However, the minimal width SBP oper-
ators in the diagonal norm cases are symmetric second derivative SBP operators.

Appendix B. Error analysis

The analysis is more transparent if we transform the problem (36) back to the original form (33). We
begin by transforming the boundary operators (41) back to the original variables, resulting in

- 0
Lo = IRC + (I, — Io))RD—,
] Ox 5 (B.1)
L] = ]1RC + (I() — (12 + OC[R)Il)RDa
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The corresponding boundary operators in the semidiscrete approximation become

Lo = LRC ® Ey + (I, — I))RD @ E,S, 82)
Li = LRC @ Ey + (Iy — (I, + olx)[})RD @ EyS. '

The semidiscrete approximation is given by

+[CoH ' Qu=[DoH (~A+BS)u+F+ToaH {Iu—g@ef
+F1®H*l{ilu—g1®e;\;}, (B.3)
u(0) =1,
where Iy and I'; are the transformed penalty matrices. The transformed stability conditions are
Iy=R"Y,, I =R"2, (B.4)

where Xy and X, are given in (45) and R is given in (34).

Only the second equation has contributions from the second derivative approximation. However, it is
not clear whether the first equation contain contributions from the boundary derivative approximations,
coming from the penalty terms. Before we proceed we note that

I'o(Iy — I,)RD = —D, I'y[yRC = P,
I'y(Io — (I + alg)[,)RD = —D, ' [,RC = PV

where
1[vV2+1 1 0 0
PO =~ PY =2 :
2 [ L V2-1) V2vao1 o
We are interested in the error e;(¢) = u(x;,t) — v;(¢) and the error equation is given by
—Me=T, (B.5)
where
M= (Q P11E0) (Q P12E0)
(Q P21E0 P2<A1El) M2,2 ’

Moy = —H N (Q + PYE, + PLYE, — e(—A4 + BS) — €EoS + 1),

7T = [T, T?] is the truncation error, with contributions from the approximation of the derivatives and
the approximation of the boundary derivatives (Su) in the penalty terms. The structure of the problem
shows that only the block M, contains the second and boundary derivative approximations. This means
that 7() will have contributions only from the first derivative approximation.

Remark. Note that e, — M eV corresponds to the left-hand side of the error equation (18) emergmg from
a stable approximation of u, +u, = 0 with u = g(¢) on the left boundary. Also note that e,( — M ,e?
corresponds to the left-hand side of the error equatlon (18) emerging from a stable approximation of the
advection—diffusion equation (13) with a = —1, « = 25 2 p=
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As before we split the error and the truncation error into two parts, e = ¢; + ¢, and T = T; + Ty,. The
internal truncation error 7; is of order ¢(h*). T; and T, have the structure shown in (20).

Lemma B.1. If (B.4) holds for the penalty matrices in (B.3), then

leill,; < O(7). (B.6)

Proof. The energy method applied to the inner part of the error leads to

exp(%)

Vi

(where 5 is an arbitrary positive constant) if (B.4) holds. [

lleill; < (Tl max(o = CCR)

To estimate e, (to simplify notation we skip the subscripts in e, and 7;) we use the Laplace transform
technique, i.e.

(S®Iy)e—Me=T, (B.7)

where ¢ = [6(V), @], § = diag(s, s) and Iy is the identity matrix. We multiply (B.7) by (diag(h, h?) ® Iy) and
end up with

Pe=T, (B.8)
where P = (S @ Iy — M), § = diag(sh, sh*) = diag(s,5) and T = [T, 7] = [,T™, > T?)]. Note that Py is
of order O(h).

Remark. A necessary requirement (as will be shown in proof of Proposition 4.1) in order to obtain a (2p)th
order accurate difference approximation of an incompletely parabolic system is that A7) = p?>T?) = O(h?).
This shows that the first derivative approximation needs to be (2p— 1)#h order accurate at the
boundaries, and that the second order derivative approximation needs to be (2p — 2)th order accurate at the
boundaries.

We need the following assumption.

Assumption B.2. The solution to (B.8) can be expanded in a power series, i.¢.

e= z(;é_,«hf. (B.9)
P

Remark. In the following proof of Proposition 4.1, P é") = TV (where 7(") is of order ¢(h*)) will be
referred to as the hyperbolic part of the error equation since it corresponds to (23), emerging from a stable
approximation of (5). Similarly Py, = T® (where T? is of order (/(h*)) will be referred to as the
parabolic part of the error equation since it corresponds to the error equation (23) emerging from a stable
approximation of the advection—diffusion equation (13) with a = —1, a = %ﬁ, p =

In the following proof, we consider the original form (33) of the system, i.e., with the boundary operators
(B.1) and the corresponding semidiscrete problem (B.3).
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Proof of Proposition 4.1. By inserting (B.9) in (B.8), and denoting P,; = hP,; we get
P Plz] l@gy] [Tm]
' ’ = | B.10)
.(2) 2 (
[ 0 P ey 7@
(1)

for the leading order terms (i.e., &,  and é(()z)).

Remark. Note that 7 in (B.8) is of ¢(h%), and that the leading order terms in fact are of order 2p. This is
only a matter of normalization.

The equations for the higher order terms are given by the following recursion formula:

Py P A;(;I) . 0 .
[0 Pu] AI(}) = _Pz‘lél(jr_)l, p=12 ... (B.11)

This indicates that (B.9) is a reasonable assumption.

The second row in (B.10) yields P, ze ). Recall that 7@ is zero in the interior. If Lemma 2 holds
for the parabolic part, then eg) = 0(;,217) By using Parsevals relation we obtain eé (t) = O(h?*) (here the
subscript b is reintroduced to elucidate that we only include the boundary part). From (B.6) we obtain
e(z)(t) (2 + e 2 _ n(th)

We now return to the error Eq. (B.5) and consider the first row, e\ — M el = M; e + TV, Note that
eV e® and T now include both the interior and the boundary parts Srnce e<2) is estimated we can in-
troduce T = M;,e® + T as a modified truncation error, i.e., ¢ W my 1) =TW where TV has the
structure of (19) with » =2p — 1. Again the error and the truncation error are spht into two parts
e =¢!! +e Jand T = TV + TV, where the internal truncation error 7" is of order @(h%¥). Since

<1) Ml 1) = TW corresponds to the error equation emerging from a stable approximation of u, + u, = 0
w1th u = g(¢) on the left boundary, the energy estimate leads to ||e al u SORP).

To estimate e{)” we again use the Laplace transform technique, which leads to P1 leb = hT (where hTél)
is of order o (th)) If Lemma 2 holds for the hyperbolic part, then eb1 = O(h?) and we obtain

e (1) = el 4 el = O(h?). This completes the proof. [

Appendix C. Diagonal norms

We now present the SBP operators used in the analysis, based on diagonal norms. We consider second,
third, fourth and fifth order accurate finite difference approximations.

C.1. First order accuracy at the boundary

The discrete norm H and the discrete second order accurate SBP operator H~'Q approximating < are
given by

— [ —

The discrete second order accurate SBP operator D, = H~!(—A4 + BS) approximating % and the boundary
derivative operator BS are given by
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12 1 P2 )
1 -2 1 1
Dy =— BS:Z

[STES

C.2. Second order accuracy at the boundary

The discrete norm H is defined as

17
48

48

-H R -4 % 0 0 0 ]
-1 0 ! 0 0 0
a2 -2 0 2 -5 0 o0

PRI 0 -3 0 3 50

0 & -3 0 3 -

r2 -5 4 -1 0 0 0 7
1 -2 1 0 0 0 0
REREEETE B I - N

R . e
0 0 -5 & -1 % 4

and the third order accurate boundary derivative operator BS is given by,

$ 33 -
0

1
3

BS =—
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C.3. Third order accuracy at the boundary

The discrete norm H is defined as

7877
8640

The discrete difference operator approximating & we denote (here) D; = H~'Q, obeying our wanted SBP

43801
43200

property
T 21600 104009 30443 _ 33311 16863 _ 15025 0 0 0 0
13649 54596 81894 27298 27298 163788
104009 _ 31 20229 24337 36661 0 0 0 0
240260 72078 24026 48052 360390
_ 30443 311 _ 11155 41287 21999
162660 32532 0 16266 32532 54220 0 0 0 0
33311 20229 485 0 4147 25427 7 0 0 0
1| 107180 21436 1398 21436 321540 3359
Dl = 7 | — lsses 24337 __ 41287 _ 4147 0 342523 _ 1296 144 0 0
78770 31508 47262 15754 472620 877 7877
15025 _ 36661 21999 _ 25427 _ 342523 0 32400 _ 6430 7120
525612 262806 87602 262806 525612 43801 43801 43801
1 3 _3 3 -3 1
0 0 0 60 20 4 0 4 20 60
. . . . 2 . . .
The discrete difference operator approximating ;7 obeying our wanted SBP property is written

D, = H (=4 + BS), where 4 = AT <0. The interior stencil is the standard sixth order accurate central
scheme /?(Dyv); = 55053 — 350j-2 + 301 — 1307 + 30511 — pal2 +5gVj43- At the boundary the operator

becomes

r 114170 _ 438107 336409  _ 276997 3747 21035 0 0 0 0
40947 54596 40947 81894 13649 163788
6173 2066 3283 _ 303 2111 _ 601
5860 879 1758 293 351 4395 0 0 0 0
_ 52391 134603 _ 21982 112915 _ 46969 30409 0 0 0 0
81330 32532 2711 16266 16266 54220
68603 _ 12423 112915 _ 75934 53369 _ 54899 48 0 0 0
1 | 321540 10718 32154 16077 21436 160770 3359
D2 = 75 | _ 7053 86551 46969 53369 _ 87904 820271 _ 129 96 0 0
h 39385 94524 23631 15754 23631 472620 7871 7877
21035 _ 24641 30409 _ 54899 820271 _ 117600 64800  _ 6480 480 ()
525612 131403 87602 131403 525612 43801 43801 43801 43801
1 _3 _4 _3 1
0 0 0 90 20 3/2 18 3/2 20 90

and the boundary derivative operator of fourth order accuracy is
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FST

33
0

o

L _4 4 2
3 412

(O8]

C.4. Fourth order accuracy at the boundary

The discrete difference operator approximating % we denote (here) D; = H~'Q, obeying our wanted SBP
property

—2540160 — 66264997 ~20708767 ~27390659
Dl = 798139 Dl = —719620 Plsi = 3096689 Pl ==Ser8764a
b _ 3544277 DL, _ 9444709 Dl.. _ 165990199 bl _ 1568311
1275992556 3277415220 327 773504324 727 2680364
198794991 Dls; =0 96962637 | —22524966
Dlis = 29962780 Dlss = 1198108 Dl = 3350455
256916579 ~20335981 68748371 66558305
Dlis = 7577663 Pls=—0132 Dlss = T158108 Dla = 5041092
20708767 32320879 Dlss =0 14054993
Dlis = 1258139 Dlss =—1513 Dlrs = 630364
—41004357 ~35518713 —27294549 2084949
Dlis = 5595356 Dlss =—115330 Dlss = 198108 Dlrs = 3680364
Dbl _ 27390659 | _ 2502774 1. _ 14054993 Dly; =0
1717977668 3777103805 >7 771198108
~2323531 ~3177073 — 42678199 70710683
Dlig = 29962780 Dlss = 1743924 Dlsg = 25160268 Dlyg = 93812740
D1,y =0 Dl3y =0 . —2592 ~ —145152
Dlss = 350527 Dlrs = 0001
Dl =0 Dlyj=0 Dlsjy=0 27648
0670091
' ’ D1y = —

670091
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Dl =0
Dy, = 354277
21 731004596

D12_,2 =0
—85002381

Dlas = 46140

Doy — 49607267

24 7~ 4429228

—165990199

Dlos = —3e7684
7655859

Dhe = 1197307
—7568311

Dlar =008
48319961

Dlas = 465068940

Dl,9 =0

Dly10=0

Dl,;;, =0

Dl =0

D131, =0

DL, = 226916579
1= 109619916

DLy, =
DIy, = S0n
Dly, =0

Dlys = %
1)146::g§§§§%§$
Dly; = %
I
Dlyy =0
Dlsi=0

Dlsn =0

Dly; =0

Dls;; =0
DL, — 13068119
&1 = 78660148
—850651
Dls2 = 103097
35518713
Dles = 061940
bl _ —21696041
4 = 1237164
9098183
Dles = 1237164
Dlgg =0
—231661
Dler = 12388
7120007
Dles = 23300740
Lo 3072
= 703097
—288

Lot = 103097

Dlgi1 =0

Dle1 =0

In the interior we have the eighth order accurate central operator

1
h(D]U)j

4 1 4

4 1 4

D171, =0
Dl., — 2323531
17 102554780
—48319961
R W (7ET]
9531219
Dlss = 30510056
.. —3870214
4= 75127739
2246221
Dlss = 3538572
~21360021
Dlse = 102554780
—70710683
Dlsy = 02554780
Dlgg =0
4064256
Dlss = 137739
—1016064
1 -
Dlsio = =5157739
193536
Dlsui =35179739
op . —18l4e
$12 75127739

1

= %UJA _ml}j% +§Uj—2 - glijfl +§v,-+1 - gsz —&—mujﬁ _@U’M'

527
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The discrete difference operator approximating fx—zz obeying our wanted SBP property is written
Dy = H'(—A4 + BS), where 4 = AT > 0. The interior stencil is the standard eight order accurate central

scheme

h2 (Dzv)j =

1 8
TSe0 T

31507 750

8

At the boundary the operator becomes

o 4870382994799 7838984095
M1 1358976868290 1752731029988
— 893640087518 1168338040
D%”‘7M%n@% ln“_%@%nn
926594825119 88747895
D23 = 0308071924 PP~ 144865467
— 1315109406200 423587231
D24 = 135897686829 D254 = 627750357
Do, . 39126983272 Do, . 43205598281
5715099742981 337 722599012852
12344491342 4876378562
D216 = 75498714905 D26 = 1583251071
o _ 451560522577 ) —5124426509
Y7 9717953736580 73766502142
D25 =0 Do, _ 10496900965
8 739548272491
D215 =0 D235 =0
D2y0=0 D23,0=0
D211 =0 D2y, =0

205

1455067816
l)zil"21132528431
171562838
D25, = —=2°°
>2 73018932633
— 43205598281
D253 = 36337191596
48242560214
D254 = 9056797899
Do, . _ —52276055645
>3 6037865266
57521587238
D25 = 9056797899
.., —80321706377
>7 736227191596
8078087158
l)zig"21132528431
_—1296
> 7299527
D25110 =0
D25_’11 == 0

8

1 8 1
FEU T gy S T gl TRl T ggg Uik

o, _ 135555328849
T 8509847458140
11904122576
D2y = ——
"2 7101307707835
— 5124426509
D2y =P
™3 7 13507694378
Do, _ 43556319241
747 60784624701
Do, . —80321706377
737 781046166268
Do, 13790130002
767 33769235945
Do, _ 950494905688
777 7303923123505
Do, _ 239073018673
™8 7 141830790969
.. _ —145152
7670091
18432
D210 = 70001
1296

2 =
670091
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D21_,12 = 0
Do, _ 333806012194
21 7390619153855
Do, _ — 154646272029
227 111605472530
1168338040
D23 = 3381641759
82699112501
D224 = 133926567036
171562838
D25 = 11160547253
Do, _ —28244698346
26 167408208795
Do, _ 11904122576
277 167408208795
Do, _ —2598164715
28 7312495323084
D2, =0
D22_’10 - 0
D2;;, =0
D22_’12 - 0

D23112 =0

94978241528
41 828644350023

Do, _ 82699112501
427 157837019052
1270761693
D2z = 13153084921
Do, . _ — 167389605005
44 118377764289
Do, . _ 48242560214
+3 739459254763
31673996013
D246 = 53612339684
Do, _ 43556319241
7118377764289
Do, _ 44430275135
48 550429566682
D24 =0
D24,0=0
D241 =0
D241, =0

10881504334
D2 = —o 0T
61 7327321118845
Do, _ —28244698346
627 140280479505
4876378562
D25 = 9352031967
— 10557998671
D264 = 17269375956
Do, . _ 37521587238
63 7 28056095901
~278531401019
D25 = 53530319670
Do, _ 13790130002
577 46760159835
Do _ —137529995233
68 = 7785570685228
2048
27103097
144
D210 103097
D26711 =0
D261, =0

529

D271, =0
D28‘l == 0
~2598164715
D2y = 7t
82 7 206729925524
Do 10496900965
83 7 155047444143
— 44430275135
D2y = 2207
4 7 310094888286
425162482
D2gs = - 0%
5379720130599
Do, _ 137529995233
56 T 7620189776572
Do, _ 239073018673
57 T 155047444143
Do _ — 144648000000
88 T 51682481381
8128512
D29 = 35127739
1016064
D210 = 5127739
129024
D21 = 5157739
9072
D2g 1 =

5127739



530 K. Mattsson, J. Nordstrom | Journal of Computational Physics 199 (2004) 503-540

and the boundary derivative operator of fifth order accuracy

4723 8% 157 _ 218 103 1 _ 6
2100 175 35 105 140 175 175
1
0
_ 6 1 103 _ 278 157 _ 839 4723
175 175 140 105 35 175 2100

The discrete norm H is defined as

1498139 20761 299527
1175080320 33780640 >3 7 725760
1107307 1304999 103097
2277725760 47725760 667780640

Appendix D. Full norms

670091
725760

7,7

5127739
5875080320

We now present the SBP operators used in the analysis, based on full norms. We consider fourth, sixth

and eighth order accurate finite difference approximations.

D.1. Fourth order accurate operators

We now present the specific form of the fourth order accurate operators used in the analysis. The discrete

norm H is defined as

2177295369 — 1166427 ) 66195v/53/5573 — 35909375
— 72 =

25488 ’ 101952

ip — 21624216071 2125 . 183612 + 14580r1 47295

- 12960 ’ - 2160

8172 + 675r1 + 415 21672 + 216071 + 655

hi2 = 540 , h24=-— 4320 ’
p3_ 122472001 +445 o 410412+ 3240011 + 12785

- 1440 ’ - 4320

10872 + 75671 + 421 8172 + 675r1 + 335

h14 =— 1296 , 3= 540 ’
1oy 4104r24 3240000 11225 216r2+2160r1 — 12085

4320 ’ 12960
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[A11 K12 K13 K14

h21  h22 K23 h24

h31 h32 K33 h34

h4l h42 h43 h44

H=h 1

h44
h34
h24
hl4

h34
h33
h23
hl13

h24
h23
h22

hl4
h13
h12

n2 hlil |

The discrete fourth order accurate operator approximating % is denoted H~'Q, obeying our wanted SBP

property
1
11=—-
q bR
12— 86472 + 6480r1 + 305 2 864r2 + 6480r1 4 2315
7= 4320 I 1440 ’
13 _ 216r2 + 162071 + 725 4 10872 + 81071 + 415
7= 540 ’ - 270 ’
14— 864712 + 6480r1 + 3335 U 864r2 + 6480r1 + 785
7= 4320 e 4320 ’
rgll ql2  gql3 ql4 T
—ql2  ¢q22 ¢23 q¢24
—q13 —q23 ¢33 ¢34 -4
—qld —q24 —q34 qg44 % %
0- I
1—12 —% q44  g34 qla
5 —q34 ¢33 ql3
—q24 —q23 ql2
L —ql4 —ql13 qll]

42

The discrete difference operator approximating <5 obeying our wanted SBP property is written

dx:

H~'(—A + BS), here denoted D,, where 4 + AT > 0. The interior stencil is the standard fourth order ac-

curate central scheme

4

1
hz(DQU)j = —E

1

Uj-3 +§Uj—1 Y + UL T U
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At the boundary the operator with a second order boundary closure becomes

D2,,=2.D0 D2,5=0.4451860342366326D0 D25 5=—0.370366153552986D —2
D2, =-5.D0 D2,4=0.3889216118347602D0 D25 6=—0.4126377895574793D -2
D25 =4.D0 D2,s=-0.1115146289530765D0 D24, =-—0.1972518376035006D — 1
D24 =-1D0 D2,6=0.5713690397754591D—-2  D24,=-0.3132697803201818D —2
D25 =0.D0 D25,=-0.2020917311782903D—-1 D2,3;=0.1209782628816308D1
D26 =0.D0 D25,=0.1076710314575741D1 D244=-0.2413299862026212D1

D2,,=0.9113401326379418D0  D2;3=-0.2104749527124675D1  D245=0.1308408547618058D1
D2,,=-0.1639646840154013D1 D2;,=0.1056078425097867D1 D246=—0.8203343284460206D — 1

and with a third order boundary derivative operator

uoo_3 3 1
6323

BS =

S

D.2. Sixth order accurate operators

We now present the specific form of the sixth order accurate operators used in the analysis. The discrete
norm H at the boundary is defined as

14400 = 72 4302400 * »1 — 7420003

1 == 3.6288¢7

p1p— 75600 % 134 1497600 + r24 11944800 « rl — 59330023
- 2.17728¢7

p13 9450 x 34202050 x r2+ 1776600 « rl— 7225847
- 340200.

h14*900 x 24+ 18900 x r1 — 649
- 226800.

115 86400 x r3 + 1828800 » r2+ 15854400 + rl — 66150023
N 3110400.

116 378000 x r3 47747200 » 12465167200 x rl — 279318239
- 1.08864¢8

1oy 302400 + r3 46091200 » r2 449896000 x rl — 210294289

7257600.
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3780 * r3 + 82575 x r2+ 741825 x rl — 2991977

h23 = 34020.
1oq . 3400 % 134104400 « r2 + 810000 x rl — 3756643
- 129600.
1os 529200 % 134 11107200 = r2 + 95508000 « rl — 400851749
- 2419200.
1o _ 86400 + 3+ 1828800 « r + 15854400 + rl — 63966279
- 3110400.
133 31300 x 341094400 « 2+ 9585000 « rl — 39593423
- 64300.
120960 * 73 4 2584800 * 72 + 22680000 * r1 — 93310367
h34 =
181440,
135 _ 5400+ 34 104400 « r2 4+ 810000 « rl — 3766003
- 129600.
136 200 % 12418900 « rl - 37217
- 226800.
paq— 17100+ #3 4364800 « r2+ 3195000 + rl — 13184701
- 21600.
g5 3780 % 13 8ISTS « r2 4 741825 « rl — 2976857
- 34020.
14— 1890 % 3440410 x 124355320 « rl - 1458223
- 68040.
155 _ 302400 « 3+ 6091200 + r2 + 49896000 + rl — 213056209
- 7257600.
Lsg_ 15600 x 134 1497600 « r2+ 11944800 + rl — 54185191
- 2.17728¢7
1o 14400 x r2 4302400 x rl 36797603

3.6288¢7

533



534 K. Mattsson, J. Nordstrom | Journal of Computational Physics 199 (2004) 503-540

where

rl = —3.6224891259957,
r2 =96.301901955532,
r3 = —609.05813881563.

The discrete sixth order accurate operator approximating % is denoted H~'Q, obeying our wanted SBP
property

[ g1l  ql2  gq13 ql4 gl5 gqlé6
—ql2  q22  ¢23 q24  q25 q26
—ql3 —¢23 ¢33 q34 ¢35 436
—qld —q24 —q34 qg44 q45 q46 43
O=|_¢q15 —q25 —¢35 —g45 455 456 q2 ¢3 ;
—ql6 —q26 —q36 —q46 —g56 q66 gl g2 43
—q3 —q2 —ql 0 gl g2 43

where
|
| =—
" =60
9
2=~
7“= %0
45
q3 = @
1.
1 =_
9 2
|5 415800 « r3 -+ 8604000 + 12+ 72954000 + rl — 283104553
1'°= 3.26592¢7
13 120960 « r3+ 2672640 + 12+ 24192000 + r1— 100358119
9°°= 6531840,
14 25200 x r34542400 + r2+4788000 x rl— 19717139
7= 403200.
15— 004800 = 73413363200 « r2 4 120960000 « rl — 485628701

3.26592¢7
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41580 * r3 4860400 * r2+4 7295400 x r1 — 31023481

q16 = 3265920.

g22 =0

J3_ 9450000+ 73+ 200635200 + 72+ 1747116000. + rl —7286801279.
9°° = 3.26592¢7

54 _ 21168000 « r3+ 449049600 « r2+3907008000. x rl — 16231108387.
47 = 3.26592¢7

ys_ 165375 x r3+3516300 x 12+ 30665250 + rl — 126996371

9°> = 453600.

2 _ 604800 & 3413363200 + r2+120960000. x r1 — 482536157

45 = 3.26592¢7

¢33=0

34— | 6993000 * r3 + 148096800 * r2 + 1286334000. % rl — 5353075351

8164800.

5_ 21168000 * r3 + 449049600 * r2 + 3907008000. * r1 —16212561187.
B 3.26592¢7

q3

75600 * 3+ 1627200 * r2 + 14364000 = r1 — 58713721

q36 = —

1209600.

qg44 =0

45 _ 9450000 x 73+ 200635200 x 72+ 1747116000. + rl —7263657599.
= 3.26592¢7

4 _ B04800 x 73+ 13363200 + r2 4120960000 + 71— 485920643
o= 3.26592¢7

455 =0

s _ 415800 + 348604000 + r2+72954000 = rl — 286439017

q =

3.26592¢7

466 =0

535
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The discrete difference operator approximating fx—zz obeying our wanted SBP property is written
Dy = H '(—A4 + BS), where 4+ A" > 0. The interior stencil is the standard sixth order accurate central

scheme

1 3

2 _
h (Dzv)j = %Uj_3 —%

Uj_2 + 2

3 49 3 3
Vi1 =g U T 5 Uit T g Vit + 90 Uit

At the boundary the operator with a fourth order boundary closure becomes

D2, ,=0.3548420602490798D1
D2,,=-0.1162385694827807D2
D2, 3=0.1480964237069501D2
D2, ,=-0.8968412049815223D1
D2, 5=0.2059642370694317D1
D2, 6=0.3761430517226221D0
D2, ;=-0.2015793975095019D0
D2,3=0.5117538641997827D — 13
D2, 9=-0.3386357570016522D — 15
D2,,=0.857883182233682D0
D2,,=-0.1397247220064007D1
D2,5,=0.3461647289468133D — 1
D2,,=0.6763679122231971D0
D2, 5s=-0.1325900419870384D0
D2, 6=—0.6345391502339508D — 1
D2,7;=0.244383001412735D — 1
D2, =-0.2800316968929196D — 4
D2,9=0.1331275129575954D — 4

D251=-0.5393903966319141D — 1
D25,=0.1153943542621719D1
D253 =-0.2040716873611299D1
D25 ,=0.698739734417074D0
D25 5=0.421429883414006D0
D2;6=-0.2262171762222378D0
D257;=0.5090670369467911D — 1
D233=—0.4371323842747547D —2
D259=0.2245491919975288D — 3
D24, =-0.2032638843942139D — 1
D2,,=0.4181668262047738D — 1
D2,5=0.1009041221554696D1
D244,=-0.2044119911750601D1
D2,5=0.9609112011420257D0
D2,6=0.9142374273488277D — 1
D247=-0.4316909959745465D — 1
D2,3=0.4668725019017949D —2
D249=-0.2461732836225921D -3

and with a fifth order boundary derivative operator

7dS1 7dS2 7dS3
1
BS =~
h
dS7
where
278586692617 B
1= 123868739203 5=
593862126054
%2 = 123868739203 54

D25, =0.1623318041994786D — 1
D2s,=—0.8794616833597996D — 1
D253=0.103577624811612D0
D25,=0.114967901600216D1
D25 s=—0.2443599523155367D1
D256=0.1375113224609842D1
D25 7;=-0.1218565837960692D0
D253 =0.8668492495883396D —2
D259=0.1307369479706344D — 3
D26, =-0.3185308684167192D -2
D26,=0.1943844988205038D — 1
D263 =—0.3865422059089032D — 1
D264 =-0.8123817099768654D — 1
D265=0.1445296692538394D1
D266=—0.2697689107917306D1
D24 7=0.1494463382995396D1
D265 =—0.1495167135596915D0
D269=0.110849963339009D — 1

7dS4 7dS5 7dS6 7dS7
0
0
dS(, dSs dS4 dS3 dS2
555639772335 dse — — 91132000935 386084381

123868739203 %5 T T 123868739203 *7 = 11260794473
327957232980 dse — 707821338
123868739203 %6 = T 123868739203
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D.3. Eight order accurate operators

We now present the specific form of the eighth order accurate operators used in the analysis. The discrete

norm H at the boundary is defined as

hyy = .17278828151304213131
hyp = .26442559491473446335
hy3 = —.31178196884312775720
hy4 = .30943600415290628943

hys = —.22687886379977231568
h1e = .10699051704359999240

hy7 = —.29198436836537438395¢ — 1
hy g = .35313167405158916567¢ — 2
hy, = 1.7526198409167495775

hy3 = —1.1935018761521814908
hya = 1.3954360831111377900

hys = —1.0175504328863858993
hye = .47894397921583602822

hy7 = —.13175544973723205885
hyg = .16150503562667126340e — 1
hssz = 2.9309103416555983901

hy4 = —2.4589576423781345782
hss = 1.8303365981930377633

hs e = —.86170509476217520096

hs7 = .23272822377785868580

hyg = —.27718561649605047808e — 1
hys = 4.5048009713827725943

hss = —2.8194294132418145464

hye = 1.4139447698567646313

hy7 = —.40168231609234325290

hyg = .49803339945923016666e — 1
hss = 3.3650057528838514157

hse = —1.2261739857055893831

hs7 = .35734819363435995274

hsg = —.45187886555639925953¢ — 1
hee = 1.6529897067349637657

he7 = —.19435314011455700920
hes = .24990727889886053755¢ — 1
h77 = 1.0588289336073241051

hys = —.76680474804950146879%¢ — 2
hgs = 1.0010106996984233357

The discrete difference operator approximating % we denote (here) D; = H~'Q, obeying our wanted SBP

property

D1, =—-2.592857142857143d0
Dll‘z = 70d0

D1, 3 =-10.50000000000000240
D1, 4=11.66666666666667d0

D1, 5=-8.750000000000005340
D1, =4.200000000000006440
D1, 7=-1.166666666666670340
D1,3=0.14285714285714438d0
D1 19= 0.

Dll,lO :0

Dll‘ll =0.

D1 1,12= 0.

D1,; =—0.14298292410192714d0
D1,,=—1.4489927866116712d0
D1,3=2.996472923917882940
D1, 4=—2.4929493873234359d0
D1,5=1.657878708389714640
D1,6=-0.743030932566032740
D1,7=0.19660315690279093d0
D1,3=-0.022921081922677878d0
D1,9=—5.9765761149596457d — 5

D139=-0.0010055472165286575d0
D13,0=3.8794759110886745d — 4
D15, =—-6.8704635776930775d — 5
D15,,=5.0082327516880903d — 6
D14, =-0.01374973021859196d0
D14, =0.1348630229070240140
D143 =-0.72696910885431376d0
D144=0.017812686448076227d0
D1,45=0.639377507606011240
D146=0.022147920488592564d0
D147=-0.1256576530204159540
D145=0.06858585083464166540
D149=-0.019233942555101392d0
D1419=0.003148615222128970240
D1y =—3.4332575058906574d — 4
D14, =1.8156892537446339d — 5
D15, =0.008886266768678270640
D15, =-0.081997207069678529d0
D153=0.3601606691840512640
D1s4=—1.138622537383166d0
D155=0.45753588027993108d0

D1gs=—1.103904746121094240
D16=0.27359438161151506d0
D147=0.6346062761644116840
Dlgs=-0.133470023762389240
D169=0.020553664597517285d0
D1g10=—5.2448374888321939d — 4
Dlgy1 =—3.5364415168681655d —4
D161, =1.9848170711942382d — 5
D1;,=0.0012022691922812573d0
D17,=-0.009940463922638009540
D1,5;=0.039882284654387555d0
D174=-0.1150048472409093140
D175=0.30419289144259271d0
D176=-0.8939440380678682640
D177=0.056932295488355524d0
D175=0.7770012571308189140
D179=-0.19389096736102715d0
D17,0=0.037021801268937171d0
D17, =-0.0034453239617136533d0
D17, =—7.1586232168436659d — 6
Dl1g; =—1.7018888206312392d — 4
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D1, 10=—2.086075830489387d — 5
D1,,,=3.0132094578465812d — 6
D1, 1, =—6.3374647316878056d — 8
D15, =0.024035178364099158d0
D15,=-0.3351199628859818940
D133 =—0.77719249965062054d0
D15 ,4=1.6547851227840236d0
D155=—-0.8194214515418832840
D1;6=0.3237431620017066640
D157=-0.08034216650419280540
D155=0.010193913461294177d0

D156=0.3891419108119479940
D157=0.047353759946214852d0
D153 =-0.060707854441402261d0
D159=0.022163172460071972d0
D159 =-0.004385536290694581d0
D15, =4.9895905469285538d — 4
D151, =—2.7483320646974942d — 5
D1 =—-0.003515423892650302840
D16,=0.032627145467311741d0
Dls3=-0.144180571912883840
D164 =0.42454757757811995d0

In the interior we have the eighth order accurate central operator
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D1g,=0.001407457714362741d0
D155 =—-0.005142824113940000540
D13 4=0.014469260937249902d0
Dlgs=-0.052868823562666749d0
D136=0.2133341610969510240
D137 =-0.8080945264015063640
D155 =0.0032794907268712007d0
D159 =0.79912442343041246d0
Dlg10=—0.1998449190496742540
D131 =0.03807686535164649140
D151, =-0.0035703772476434379d0

1 4 4 1
hD1v); = 3g5 b4 = To5 U3 T 502 T30 F 5l T30 F g5l ogg Ui
dZ

The discrete difference operator approximating

D,
scheme

8
hZ(Dzl))j = —

1 1
56074 T35 52t

dx?

8 205 8
Vi1 —HUJ gl)j+]

obeying our wanted SBP property is written
= H '(—4 + BS), where 4 + A" > 0. The interior stencil is the standard eight order accurate central

8 1

502 35l T 50 Ui

5

At the boundary the operator with a sixth order boundary closure becomes

= 0.459559486573298D1

= —0.1737587003697495D2
0.2671554512941234D2
—0.182533124810469D2
—0.208613717646915D1
0.1436890974117532D2
—0.1157334375947655D2
0.4224129963025046D1
—0.6155162453781307D0

)
)
)
)

) =

)

)=

) =

)=

) =

)=

)=

)
.10
(11
12
7) - 0.7663483674837219D0
) = —0.9196803752511684D0
) = —0.842207972743573D0
) = 0.1034353161256694D1
) = 0.9224566003381633D0
) = —0.1915904204050834D1
) = 0.1358106271667133D1
) = —0.4698818319034839D0
) = 0.6642475553490265D — 1
0) = —0.163599150014082D — 4
1) = 0.1619270768597741D — 5
2) = —0.3168732365843903D — 7
) = —0.9930472508132245D — 1
) = 0.1494543277053003D1
) = —0.317028822529708D1
) = 0.2864206231232483D1

1
1
1,
1
1,
1
1
1
1,
1
1
1
2
2,
2
2,
2,
2,
2,
2,
2
2
2
2
3,
3
3,
3

)
)
)

i

i

D2(1,1
D2(1,2
D2(1,3
D2(1,4
D2(1,5
D2(1,6
D2(1,7
D2(1,8
D2(1,9
D2(1,1
D2(1,1
D2(1,1
D2(2,1
D2(2,2
D2(2,3
D2(2,4
D2(2,5
D2(2,6
D2(2,7
D2(2,8
D2(2,9
D2(2,1
D2(2,1
D2(2,1
D2(3,1
D2(3,2
D2(3,3
D2(3,4

5

D2(3,9) = —0.3982789723630851D — 1
D2(3,10) = 0.3613749551360845D — 3
D2(3,11) = —0.4325584278035533D — 4
D2(3,12) = 0.2504116375844045D — 5
D2(4,1) = 0.413834452956972D — 2
D2(4,2) = —0.9317382863354466D — 1
D2(4,3) = 0.1296278911778636D1
D2(4,4) = —0.2301454617412467D1
D2(4,5) = 0.9496907454250803D0
D2(4,6) = 0.3211654316623705D0
D2(4,7) = —0.2522929099188442D0
D2(4,8) = 0.930043044984534D — 1
D2(4,9) = —0.1951026759150047D — 1
D2(4,10) = 0.2348749011339006D — 2
D2(4,11) = —0.2039417953611042D — 3
D2(4,12) = 0.9078446268723169D — 5
D2(5,1) = 0.9702030996040648D — 2
D2(5,2) = —0.6794130076783107D — 1
D2(5,3) = 0.1333345846555384D0
D2(5,4) =0.9149526892124103D0
D2(5,5) = —0.1957269586741238D1
D2(5,6) = 0.8452193170274778D0
D2(5,7) = 0.2160399635643034D0
D2(5,8) = —0.1182303495391327D0
D2(5,9) = 0.2723622874009121D — 1
D2(5,10) = —0.3328174251388732D — 2
D2(5,11) = 0.2983387640521609D — 3
D2(5,12) = —0.1374166032348747D — 4

D2(6,5) = 0.9837460406594241D0
D2(6,6) = —0.2324548401306039D1
D2(6,7) = 0.1311841356539494D1
D2(6,8) = —0.1004519515199941D0
D2(6,9) = 0.5233628499353206D — 2
D2(6,10) = 0.5458274935095434D — 3
D2(6,11) = —0.2121077126646392D — 3
D2(6,12) = 0.9924085355971193D — 5
D2(7,1) = 0.2798761681044611D — 2
D2(7,2) = —0.2273831582632708D — 1
D2(7,3) = 0.7941253606056085D — 1
D2(7,4) = —0.1414647886625625D0
D2(7,5) = 0.1676244442372628D — 1
D2(7,6) = 0.1416153480495742D1
D2(7,7) = —0.2745855902808057D1
D2(7,8) = 0.1564969049973078D1
D2(7,9) = —0.192894978753717D0
D2(7,10) = 0.2457122826770361D — 1
D2(7,11) = —0.1709935539582438D — 2
D2(7,12) = —0.3579311608421833D — 5
D2(8,1) = —0.4040429839128132D — 3
D2(8,2) = 0.3282528546989832D — 2
D2(8,3) = —0.117215310517751D — 1
D2(8,4) = 0.2230119016828276D — 1
D2(8,5) = —0.589253331879865D — 2
D2(8,6) = —0.1734623416535851D0
D2(8,7) = 0.1585367510775726D1
D2(8,8) = —0.2842164305683002D1
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D2(3,5) = —0.2207907708688962D1 D2(6,1) = —0.7955850076892026D — 2 D2(8,9) = 0.1598973239836509D1
D2(3,6) = 0.1847596328819334D1 D2(6,2) = 0.628530334801436D — 1 D2(8,10) = —0.199880296017579D0
D2(3,7) = —0.9882048151539512D0 D2(6,3) = —0.2054352689917416D0 D2(8,11) = 0.2538577000496714D — 1
D2(3,8) = 0.298866911124072D0 D2(6,4) = 0.2743737688500514D0 D2(8,12) = —0.1785188623821719D — 2
and with a seventh order boundary derivative operator
—dS1 —dSz —dS3 —dS4 —dSs —dS6 —dS7 —ng —dS9
0
BS =1
T h
0
dS9 ng dS7 dS6 ds 5 dS4 ds 3 ds ) ds 1
_ 26605318914871 4o _ 1142764970579
1= 7 70574000000000 %5 = T 2114800000000
. _ 6881394988747 4o _ 259035026131
32 = 3643500000000 %0 = T 2643500000000
o _ 4415176495419 o, _ 5193568357271
%3 = T 75287000000000 %7 = 5287000000000
o, _ 19479098298429 o _ 1245462146053
* 7 2643500000000 ¥ 2643500000000
76749811
% = 1000000000
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